Unit 12: Plant Growth
植物成長
Plant Growth
植物成長
The growth of plants is a dynamic, integrated process that is expressed in the pattern of development of individual organs.
植物の成長は個々の器官の開発のパターンに表現される動的、統合されたプロセスである。
Early studies of plant tolerance to environmental stresses by Wood and Petrie were of the effects upon this pattern of the plant responses.
Wood 及びPetrie による環境ストレスへの植物の許容の早い調査は植物の応答のこのパターンに効果だった。
Wood initiated physiological studies of the ontogeny of the very tolerant Australian native flora and these were continued by other workers.
非常に耐久性があるオーストラリアの天然植物相の個体発生の木によって始められた生理学的な調査およびこれらは他の労働者によって続けられた。
Much of the earlier work was reviewed by Wood.
初期の作品の多くはWood によって見直された。
He found that the morphological characters of the Australian xerophytic flora that he studied differed from mesophytic flora in much the same manner as did plant associations in other climatic regions.
彼は他の気候上の地域の連合を植えなさいと彼が調査したオーストラリアの乾性植物の植物相の形態学上の特性が多くのmesophytic 植物相と同じ方法異なったことが分った。
But, the schlerophyll leaves of Australian xerophytes had a high degree of lignification as a result of a partial diversion of the normal carbohydrate flux, that resulted in an accumulation of tannins.
しかし、オーストラリアのxerophytes のschlerophyll の葉にタンニンの蓄積で正常な炭水化物の変化、それの部分的な転換の結果としてlignification の高度が起因したあった。
In the tomentose succulent leaves of the and saltbush steppes the diversion was to pentosan formation.
及びsaltbush のステップのtomentose 水気が多い葉に転換はペントサンの形成にあった。
This led to detailed biochemical studies of responses to water shortage and focussed attention on sulphur containing amino acids and protein metabolism by Wood.
これは水不足への応答の詳しく生化学的な調査をもたらし、Wood によってアミノ酸及び蛋白質の新陳代謝を含んでいる硫黄に注意を焦点を合わせた。
Levitt went further and studied sulphydryls as an important factor in frost hardiness.
Levitt は更に行き、霜のhardiness の重要な要因としてsulphydryls を調査した。
In these early studies Wood concluded that "Water does not exert an effect as such, that is, as a molecular species through its activity".
これらで"水それ自体効果を出さない活動によって分子種としてことを早く木をすなわち、完了した、" が調査する。
However, that view has required modification, as will be pointed out here from the ontogenetic studies undertaken on a range of plant tolerances.
但し、その眺めは植物の許容の範囲で引き受けられたontogenetic 調査からここに指摘されるように、修正を要求した。
Previous volumes have described the many climatic changes to which agricultural plants have adapted to varying degrees in widely diverse regions,
前の容積は農業の植物が広く多様な地域の様々なレベルに合わせた多くの気候上変更を記述した、
and have pointed to the anticipated trends in climate to which mankind is contributing and which will fundamentally affect the productivity of his agriculture.
そして人類が貢献している基本的に彼の農業の生産性に影響を与え、気候の予想された傾向を指した。
Climatic change not only affects aerial environment but leaves its imprint upon the edaphic environment in which plants grow.
気候上変更の情緒の空気の環境しか植物が育つ土壌の環境にしかし押印を残さない。
There are numerous examples: The aerial deposits of soil from the Gobi Desert now constitute the highly fertile loessial soils of China;
多数の例がある: Gobi 砂漠からの土の空気の沈殿物は今中国の非常に肥沃なloessial 土を構成する;
The impoverished soils of Australia result from aeons of leaching during previous periods of higher rainfall;
オーストラリアの困窮した土はより高い降雨量の前の期間の間の濾過のaeons に起因する;
The nutrient leached soils of the lush Amazon region lead to shallow rooted tropical vegetation;
酒のアマゾン地域の栄養濾された土は浅い定着させた熱帯植物をもたらす;
The fertile river deltas of East China;
中国東部の肥沃な川のデルタ;
Thailand and the Nile River are the product of heavy rains in higher regions upstream;
タイ及びナイル川はより高い地域の大雨のプロダクト上流にである;
and The cyclic salt of Australian soils results from thousands of years of wind borne sea spray deposited far inland from coastal regions.
そしてたくさんの風によって耐えられた海スプレーの年からのオーストラリアの土の結果の循環塩は沿岸水域からの遠い内陸を沈殿させた。
These are but a few of the examples.
これらはしかし少数の例ある。